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The problem of three-dimensional flows arising from the twist instability of Taylor 
vortices is investigated numerically in the narrow gap limit of the Taylor-Couette 
system with nearly corotating cylinders. There are two types of twist vortices : those 
that do not deform the in- and outflow boundaries of the Taylor vortices and those 
that do. The latter type are called wavy twist vortices and correspond to class I1 of 
Nagata (1986). The stability of the twist vortices with respect to arbitrary 
infinitesimal disturbances is analysed with the result that the twist solutions are 
unstable within a large part of the parameter space with respect to  Eckhaus and 
skewed-varicose-type instabilities. An analytical model is described which fits the 
numerical results on the transition from axisymmetric vortices to  unstable twist 
solutions. The theoretical findings are compared with experimental observations. 

1. Introduction 
Apart from Rayleigh-Be'nard convection, Taylor-Couette flow between dif- 

fcrcntially rotating cylinders is the best known system for the study of subsequent 
transitions leading from simple to more complex forms of fluid motion. Because of 
the particular direction of the axis of rotation and because of the different radii of the 
cylinders the Taylor-Couette system exhibits fewer symmetries than a horizontally 
extended Rayleigh-BBnard layer with a Boussinesq fluid. In  the limit of a small gap 
between the two coaxial cylinders an additional symmetry is gained, however, and 
the Taylor-Couette system becomes equivalent with respect to  its symmetries to a 
Rayleigh-Be'nard layer of an electrically conducting fluid with an imposed horizontal 
magnetic field, for instance. In fact, the two-dimensional rolls, which are the 
preferred mode a t  the onset of instability, and the Taylor vortices represent 
mathematically identical solutions of the basic equations if the temperature of the 
Raylcigh-Be'nard layer is identified with the azimuthal velocity field of the 
Taylor-Couette system and if the Prandtl number is set equal to unity. 

Systems with high degrees of symmetry are especially useful for theoretical 
investigations of transitions to complex forms of fluid flow. While the basic solution 
reflects the symmetry of the external conditions, one or more symmetries are usually 
broken as bifurcations occur. Axisymmetric Taylor vortices are introduced over a 
wide range of the parameter space as the first instability as the Reynolds number is 
increased. The axisymmetry is usually broken through the secondary instability and 
a variety of three-dimensional flows is introduced depending on the position in the 
parameter space. Wavy vortices and twist vortices appear to  be the most widely 
observed flows in small-gap experiments (Andereck, Dickman & Swinney 1983). 

t Present address : Department of Mathematics, The University of Birmingham, Birmingham 
H15 2TT. UK. 
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Much of the theoretical effort has thus been focused on these types of flow. 
Computations of three-dimensional wavy vortex flow have been presented by Marcus 
(1984) and Moser, Moin & Leonhard (1983) in the case of a finite gap. In the present 
paper we shall adopt the limit of a small gap in the case of nearly corotating cylinders 
since it allows the following theoretical simplifications : 

(i) The axisymmetric solution depends on only a single external parameter in this 
limit. In  fact, i t  becomes mathematically identical to convection rolls in a fluid of 
Prandtl number unity. 

(ii) The additional symmetry of this limit permits the separation of the 
infinitesimal three-dimensional disturbances into two classes. Moreover, because the 
averaged flow vanishes in the particular frame of reference rotating with the mean 
angular velocity of the two cylinders, most of the growing disturbances correspond 
to monotonic bifurcations. 

(iii) The latter property permits the description of several non-axisymmetric 
vortex flows in the form of stationary solutions of the basic equations with respect 
to the particular frame of reference. 

(iv) The stability of the stationary tertiary flow states can be investigated 
relatively easily by an extension of the analysis used to study the stability of 
axisymmetric Taylor vortices. 

The stationarity of certain tertiary flow states can also be achieved, of course, in 
the case of a finite gap by a suitable adjustment of the rotation rate of the reference 
frame. This rotation rate does not correspond to the mean angular velocities of the 
cylinders, however, and thus cannot be predicted a priori. Instead it varies with the 
amplitude of the tertiary flow. 

The simplifications (i)-(iii) have been already used by Nagata (1986, 1988) who 
studied the stability of Taylor vortices over a wide range of the parameter space 
within the small-gap approximation and also obtained three-dimensional solutions 
describing wavy vortices. I n  the present paper finite-amplitude twist and wavy twist 
solutions will be studied numerically by the same methods as used in Nagata (1986, 
1988) and in the earlier work by Nagata & Busse (1983). For the first time a stability 
analysis of tertiary flow states will be included in the analysis, which permits the 
identification of the third subsequent bifurcation of the system. Some preliminary 
results of the present analysis have been reported at  a recent conference (Weisshaar, 
Busse & Nagata 1990). 

A wealth of information on three-dimensional flows in the Taylor-Couette system 
has become available in recent years through the work of Andereck et al. (1983) and 
Andereck, Lin & Swinney (1986). Although the ratio of inner to outer radius of the 
independently rotating cylinders was only about 0.88, the agreement between 
theoretical predictions and experimental observations for the onset of Taylor 
vortices and secondary instabilities is remarkably good. We shall return to questions 
of comparisons in $53 and 4. 

The paper starts with an outline of the mathematical technique in $2. The Galerkin 
method will be employed and steady finite-amplitude solutions are obtained by the 
Newton-Raphson iteration method. The three-dimensional twist vortex solutions 
are described in $3 and their stability is analysed in $4. Concluding remarks are 
offered in $5. 
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2. Mathematical formulation of the problem 
We consider the flow in the narrow gap between two coaxial cylinders with radii 

R, and R, and rotating with speeds Q,R, and SZ,R,, respectively. The gap width 
d = R, -R, will be used as lengthscale in the following and d2/v as timescale, where v 
is the kinematic viscosity of the fluid. We introduce a Cartesian system of 
coordinates with the x-coordinate in the radial direction, the y-coordinate in the 
azimuthal direction and the z-coordinate in the direction of the axis as shown in 
figure 1 .  The corresponding unit vectors will be denoted by i ,  j ,  k.  The dimensionless 
Navier-Stokes equations can then be obtained in the form 

( k + u . V ) u + R k  x u = -Vn+V2u,  (2 . la)  

v - u  = 0, (2.lb) 

where 52 is twice the mean rotation rate in dimensionless units, 

52 = (Q1+52,)d2/v. 

The boundary conditions are given by 

where the Reynolds number W is defined by 

W (52, -52,) (R, + R,)  d/2v. 

It is convenient to eliminate the equation of continuity (2.1 b)  by the introduction of 
the following general representation of the velocity field : 

u = ( - W x + V ( x ) ) j + V x ( V x i q 5 ) + V x i @ .  (2.5) 

By using the operations i.V x (V x . . ,) and i -V  x on equation ( 2 . 1 ~ )  we obtain two 
equations for q5 and @: 

+ i - V  x (V x ( u - V u ) ) ,  ( 2 . 6 ~ )  

(2.6b) 

a a 
(V2- l )A2@+52-A2$ aZ = (-Wx+V)-A,@+ aY (u -Vu) ,  

( 2 . 6 ~ )  

The third equation ( 2 . 6 ~ )  for the azimuthal mean flow V(x) is obtained when the y- 
component of (2.1 a)  is averaged over cylinders x = const. This average is indicated 
by a bar. The operator A, is defined by A, = V2 - ( i - V ) 2 .  

The boundary condition (2.3) implies the conditions 

(2.7) 
a 
ax 

$ = - q j = @ = V = O  a t  x = k ) .  
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The small-gap approximation for nearly corotating cylinders is defined by 

where the ratio of the two quantities on the left-hand sides will be finite in general. 
While the trivial solution $ = $ = V = 0 exists everywhere, it is unstable with 
respect to y-independent disturbances in the form of Taylor vortices when the 
condition 

is satisfied. The Taylor vortices are mathematically identical to convection rolls in 
a fluid layer of Prandtl number unity heated from below. But this analogy ends when 
three-dimensional effects are considered and the parameters 9, 52 no longer appear 
in the problem only in the combination (9-Q)Q. In  Nagata (1986) the stability of 
the y-independent Taylor vortex solutions was investigated with respect to arbitrary 
disturbances. Here we are interested in the three-dimensional solutions generated by 
growing twist-type disturbances. 

The instabilities of class 1 and class 2 studied in Nagata (1986) correspond to a 
wavy modulation of the Taylor vortices in the azimuthal direction and exhibit either 
the same symmetry in the z-direction as in the vortex solution or the symmetry of 
a small translation of that solution. We shall refer to the former case as the twist 
instability, and the latter as the wavy twist instability. At finite amplitudes of the 
disturbances the three-dimensional solutions can be described by 

(9-Q)Q 3 1708 (2.9) 

and by 

(2.10a) 

(2.106) 

(2.1 1 a )  
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where the upper functions in the wavy bracket correspond to even n+l while the 
lowernfunctions must be chosen for odd n+l .  In the case of (2.11) the coefficients 
dmnl ,  bmnz vanish for odd m and the coefficients am,,, bmnz vanish for even m. The 
expansion functionsf,(x) vanish with their derivatives at  x = +;. For their definition 
we refer to Nagata (1986) or to Chandrasekhar (1961, p. 635). In both (2.10) and 
(2.11) the modification of the mean zonal flow is given by 

V = z ck sin 2knx 
k 

(2.12) 

since the mean flow must be antisymmetric with respect to the midplane of the fluid 
layer for reasons of symmetry. 

Both (2.10) and (2.11) describe the Taylor vortex flow in the case when coefficients 
with m > 0 vanish. Solution (2.10) is called twist solution since the terms with m > 
0 do not distort the boundary between neighbouring vortices. We choose the name 
wavy twist for (2.11) because then periodic shift of the boundary between 
neighbouring vortices gives the twisted vortices a wavy appearance. It belongs to the 
same symmetry class as the wavy Taylor vortex according to the Iooss (1986) 
classification scheme. While wavy Taylor vortices are characterized by a finite phase 
speed relative to the frame of reference rotating with the mean rotation rate, both 
twist solutions are stationary with respect to this frame in the small-gap limit. 

The stability of steady solutions of the form (2.10) or (2.11) can be investigated by 
superimposing infinitesimal disturbances, 

6 = 2 ~,,,exp~i(ny+~)z+i(ma+d)y+at~~,(x), ( 2 . 1 3 ~ )  

6 = z ~,,,exp{i(ny+b)z+i(rna+d) y+at)sinln(x-i), (2.13 b )  

P = C. Ek sin 2nkx. (2 .13~)  

The equations for the coefficients timnlr b",,,, Ek are linear homogenous with the 
complex growth rate u as eigenvalue. Unless b and d both vanish, P must be 
neglected. For a given steady solution characterized by the parameters a, y ,  9, and 
52 the eigenvalues a can be determined as a function of the wavenumber parameters 
b and d. Whenever an eigenvalue u with positive real part a,. is found, the steady 
solution is unstable. Otherwise we shall regard it as stable. In the following we shall 
first discuss the properties of the steady solutions (2.10) and (2.11) and then analyse 
their stability. 

m .  n, 1 

m,  n ,  1 

k 

3. Steady twist solutions 
3.1. Onset of twists 

The twist instability breaks the symmetry with respect to the axis of rotation, and 
introduces an azimuthal variation with the basic wavenumber a. When the Reynolds 
number is increased there exists a critical value of a at which the twist instability 
first occurs. This preferred value of a will be assumed in the following unless we 
indicate otherwise. Hence a twist solution is characterized by its symmetry class and 
the set of parameters 9,519, and y. Figure 2 (a )  shows curves of the critical Reynolds 
numbers for the onset of the twist instability as a function of 52/9 for several 
values of the axial wavenumber y.  It is evident that the critical Reynolds number 
decreases monotonically with increasing axial wavelength of the vortices, while for 
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FIQURE 2. (a) The onset of twist modes as a function of the rotation rate B/W for various 
wavenumbers y .  The solid line corresponds to ordinary twists and the dashed line to wavy twists, 
and the dash-dotted lines correspond to the onset of subharmonic disturbances. ( b )  The 
wavenumber u in the azimuthal direction for the growing disturbances of (a). 

fixed y the smallest critical Reynolds number is achieved at rotation rates in the 
interval 0.6 < Q/W < 0.8. I n  this region the neutral curve for the onset of wavy 
twists also intersects the neutral curve of ordinary twists. Ordinary twists are 
preferred a t  low rotation rates, while wavy twists are preferred at  high rotation rates. 
In  figure 2 ( a )  we have also plotted the Reynolds number for the onset of a 
subharmonic instability corresponding to b = ~ in (2.12). This instability can be 
regarded as a combination of the two twist instabilities which are coupled by the 
Floquet factor exp{ibz}. It is thus not surprising that its onset occurs a t  an 
intermediate Reynolds number. It does not seem to become the preferred instability 
anywhere and its physical significance is thus doubtful. 

A direct comparison with experimental results obtained by Andereck et al. (1983) 
can be done after the parameters W and 52 have been transformed into the 
parameters W, and W,, which are the inner and the outer Reynolds number used in 
the cited experiments. The transformation relation (see also Nagata 1986) is given by 

(3.la, b) 

where q = 0.883 is the cylinder radius ratio used in the experiments. In  figure 3 (a, b) 
critical curves for the onset of twists for two fixed outer Reynolds numbers, namely 
5& = 815 and 1060, are compared with experiments. At Bo = 815 (figure 3a) the 
experimental data cover rotation rates in the range 0.58 < Q/W < 0.83 while a t  
@ = 1060 (figure 3 b )  they cover the interval 0.78 < 52/B < 0.90. Only ordinary 
twists seem to have been observed in the experiments. The observed wavelength in 
the azimuthal direction nearly matches the wavelength of the Taylor vortices in the 
axial direction, which agrees well in the relevant regime with the theoretical findings 
shown in figure 2 ( b ) .  The observed onset is shifted with respect to the solid lines in 
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FIGURE 3. The onset of twist modes in comparison to the experimental data by Andereck et al. 
(1983) (symbols). The solid curve corresponds to ordinary twists and the dotted curve to wavy 
twists. The outer Reynolds number is (a) go = 815, ( b )  % = 1060. 

figure 3 (a,  b ) .  But this shift can be attributed to the effect of a finite gap width in the 
experiment. While the critical Reynolds number for the onset of ordinary twists 
seems to be somewhat lowered by the finite-gap effect, a t  least for lower values of y ,  
the opposite shift seems to occur for the onset of wavy twists, since there appears to 
be no experimental evidence for them. 
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Torque 7 

R 2D 3D(NT= 10) 3D(NT=9)  Q/9 a 
958'15 0.55 3.62 

498.70 0.80 1.98 

Ordinary twists = 397.67 412.1 964.79 958.68 
401.1 928.34 926.93 926.36 

332.4 473.31 472.85 472.76 
Wavy twists = 327.53 348.1 501.28 498.75 

TABLE 1. Torque 7 of a Taylor vortex and for twist solutions with y = 3.1 

3.2. Finite-amplitude solutions 
For the calculation of finite-amplitude solutions a proper choice of truncation 
parameters is necessary. This choice is problem-dependent and is also influenced by 
the computer storage requirements of the stability analysis. Several truncation 
formulae were tested. The following formula for the subscripts of the coefficients that  
are taken into account in (2.10), (2.11) turned out to  optimize computer storage: 

I +  Iml+ In1 Q NT. ( 3 . 2 ~ )  

In addition we introduce an extra truncation for m :  

ImlQ mT. (3 .2b )  

Since the same truncation formulae must be applied for the stability analysis of twist 
vortex flow for reasons of consistency, the values 10 and 4 were usually chosen for 
NT and mT, respectively, in order to satisfy the storage requirements. This truncation 
procedure was also used in the case of the axisymmctric Taylor vortices discussed in 
$3.1.  

The finite-amplitude solutions have the following general properties. All twist 
solutions bifurcate supercritically when the azimuthal wavenumber a at which the 
instability sets in first is used. No subcritical solutions were found. Solutions with 
different values of a exist a t  Reynolds numbers above qI. At higher Reynolds 
numbers there is some ambiguity in thc choice of a. We assume constant a on lines 
Q/5t = const. and y = const. in the parameter space. Coefficients with subscripts 
m = 1 increase proportional to E;, where 6 = 9-q1 is a small deviation from the 
threshold Reynolds number for twists. Solutions have been computed for a finite 
range of E above threshold. 

A useful characterization of finite-amplitude solutions is given by the torque T = 

dV/dxl,,,;, which is exerted on the cylinders. In  table 1 the torques of two 
representative twist solutions of each symmetry class are compared with values of T 

of the (unstable) two-dimensional solutions at  the same points in the parameter 
space. The torques of the tertiary flows increase with Reynolds number but are 
always smaller than the corresponding torque of the axisymmetric Taylor vortex 
flow. Hence the twist instability reduces the increase of the torque with Reynolds 
number. The torque T can also be used as a sensitive measure of convergence. In table 
1 the torques of tertiary flows obtained for the truncation condition NT = 9 are also 
displayed. The values obtained by the two truncation conditions differ by only 
0.02 %. Individual coefficients may show somewhat larger changes since the addition 
of high-order coefficients at higher truncation is compensated by a readjustment of 
low-order coefficients. This effect may be seen in table 2 where mean flow coefficients 
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FIGURE 4. (a) Ordinary twist solution at 9 = 271.6, y = 2.3, a = 2.63, Q/9 = 0.55. The streamlines 
near the outer wall are plotted. (b )  Wavy twist solution at 9 = 640, y = 2.8, a = 1.23, SZ/9 = 0.9. 
The streamlines of shear near the outer wall are plotted. 

k N,  = 9 N,  = 10 

1 12.28 870987 12.28 486500 
2 -1.41308995 -1.41806455 
3 -0.00984295 -0.00957502 
4 0.10242039 0.08 318 781 

6 0.01075080 0.00 873 440 

8 0.00231 991 0.00 218 639 
9 0.00 1 19 623 

TABLE 2. Mean flow coefficients ck for W = 267.49485, SZ = 0.89,  y = 2.7, a = 1.791 

5 -0.02726337 -0.04443247 

7 -0.00474061 -0.00424608 

have been listed for different truncation levels. The total influence of the shear is 
changed little as the addition of the 9th coefficients is compensated by a 
corresponding decrease of lower-order coefficients. 

Figures 4 ( a )  and 4(b )  give an impression of the image of the twist vortices as they 
would appear to  the observer. We have drawn streamlines based on du/dxl,=; instead 
of on the velocity field u since the latter vanishes a t  x = 1. The particles used for flow 
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FIGURE 5. (a) Ordinary twist solution at W = 271.6, y = 2.3, a = 2.63, Q/W = 0.55. (b) Wavy twist 
solution at 9 = 640, y = 2.8, a = 1.23, Q/9 = 0.9. The plots show a three-dimensional 
representation of the flow by isolines of the potentials @, a$/& and -a$/ay in the planes 
perpendicular to the unit vectors i ,  j and k, respectively. 

visualization usually align themselves with the shear and should produce a similar 
image. The streamlines of the shear clearly reproduce the typical twist structure. The 
plots are presented with the correct aspect ratio of axial and azimuthal wavelength. 
For ordinary twists (figure 4 a )  this aspect ratio agrees well with that seen in the 
photographs published by Andereck et al. (1983, 1986). The axial wavelength is 
larger by a factor of 1.3 than the azimuthal wavelength. By contrast, the azimuthal 
wavelength of wavy twists is significantly longer than the axial wavelength in the 
parameter regime where they are preferred. Unfortunately photographs of structures 
which may be related to wavy twists are not available. 

The fluctuating velocity field can be written in the form u = 
V x i$ + V x j$l + V x where i, j and k are the unit vectors in the x-, y- and z- 
directions, respectively, and $1 = a$/az, $2 = -a$/ay are derivatives of the potential 
q5. This formula allows a three-dimensional graphic representation of the velocity 
field through contour plots of $, $1 and $2 in the planes perpendicular to i, j ,  k as 
shown for typical examples in figure 5(a ,  b ) .  

4. Stability of twisted vortices 
With the truncation parameters NT = 10 and mT = 4 the matrix for the coefficients 

gZ,,,. and Ek attains a rank of 758. However, when one of the Floquet 
parameters d or b vanishes the eigenvectors separate into two independent subclasses 
and the size of the matrix is halved. Fortunately, typical properties of the 
instabilities can be studied in cases when either b or d vanishes. I n  many cases, 
however, the full problem has also been solved. 

The results of the stability analysis are summarized in figure 6, where the neutral 
curves for the onset of twists are displayed in the three-dimensional parameter space 



Twist vortices and their instabilities in the Taylor-Couette system 559 

"1 1 1  
500 

9 400 

300 

1 
200 

FIGURE 6. The results of the stability analysis in the cases y = 2.3, 2.7, 3.1 have been combined in 
order to give an impression of the three-dimensional nature of the stability regions. The solid lines 
represent the onset of twist solutions, while the hatched areas indicate the stable regimes of twist 
solutions. 

(Q/B,  y ,  a). We have included three curves, for the axial wavenumbers y = 2.3, 2.7 
and 3.1. The hatched areas denote regimes of stable twist vortices. In the following 
we shall describe the various instabilities of twisted vortices on the basis of this 
diagram. Only twist solutions with Reynolds numbers W in the interval 0 < W- 
%I < 60 have been analysed with respect to their stability. Regimes of stable 
solutions that may eventually exist above these Reynolds numbers have not been 
considered in the plot. 

While ordinary twists are preferred at  low rotation rates and wavy twists at  high 
rotation rates, the regions of existence of the two twist solutions overlap to a 
considerable extent. The twist solution that is not preferred because of a higher 
critical Reynolds number will usually be unstable with respect to disturbances with 
the tendency to realize the other twist solution. But at intermediate rotation rates 
both twist solutions are found to be unstable, as shown in figure 6. The mechanism 
of instability resembles an Eckheus-type instability in that the growth rate u is real 
and tends to grow proportionally to b2. This instability sets in at the threshold of 
twist solutions for arbitrary small b. In the limit b + O  the disturbance corresponds 
to a translation or shift of the twist solution in the z-direction with a positive second 
derivative = d2us/db2 lb-,,. The b-value of the maximum growth rate increases 
with increasing distance from the threshold. Below threshold, however, the 
axisymmetric Taylor-Couette vortices are stable and crl jumps from negative to 
positive values across the threshold. This discontinuity originates from the 
degeneracy of the eigenvector space spanned by the shifting mode and by the twist 
mode. Below threshold the growth rates for small b are given by 

us = -a,b2, ut = -a2b2+c1(W-%I).  (4.1) 



560 E. Weisshaar, F .  

l ~ l ~ 1 ' I ' " l  

\ 
\ 

\ - 
\ 

\ -0.01 \ - 
\ 
\ \ 

\ 
U 

\ 
\ 
\ 
\ 
\ 

-0.02 \ -  
- 
///I \ 

c \ \ 

\ 
\ 
\ 

-0.03 - \ - 
\ 
\ 
\ 
\ 
\ 

-0.04 I I I ). 

H .  Busse and M .  Nagata 

-n.n4 IIIIIIIIIIIIIII . 

279.60 62 63 64 279.65 58 59 331.65 62 63 64 337.60 
w w 

FIQURE 7. Growth rates for the shifting (solid lines) and twist (dashed lines) modes as function of 
the Reynolds number for (a) ordinary twists with a = 2.8163, y = 2.7, and (b)  wavy twists with 
a = 2.66, y = 3.1. The b-values are 0, 0.025, 0.05 for the upper. middle and lower curves on the 
left-hand sides. 

The eigenvector of the shifting mode exhibits components with m = 0 only, while the 
twist mode has non-axisymmetric components with m = 1. Above threshold they are 
coupled by the action of the non-axisymmetric components of the finite-amplitude 
solutions 

( 4 . 2 )  
u+a,  b2 ( a - % I ) t  bc3 /c4  I ( W - 9 J i b c 4  ~ + a , b ~ + c ~ ( W - $ ~ )  

The two growth rates are thus given by 

Ul, 2 = -3b2(a1  +a,)  + c 2 ( 9  -4111 
~ { ~ [ b 2 ( a , - a 2 ) + c 2 ( W - ~ I ) ] 2  +c3  b2 (9 -WI; , ) } f .  (4.3) 

When this expression is evaluated in the limit b+O, 

(4.4~) 

+..., ( 4 . 4 b )  (72  = 

are obtained. In  the present case a,  < c3/c2 holds and a positive growth rate is found. 
u1 reaches its maximum ulm at the value b k ,  

ulm x 3; t - a , )  with b k  x ~ ( c 3 c 2 - a l c ~ ) ( W - ~ I ) [  

but these expressions provide only a rough estimate since the conditions for the 
validity of ( 4 . 4 )  are not well satisfied at b = b,. Although the matrix elements in the 
determinant vary continuously as W - changes from negative to positive values, 
the second derivative a2u/ab2 exhibits a discontinuity. In  figure 7 (a ,  b )  numerical 
computations of the two eigenvalues are displayed for different values of b for both 
the ordinary and the wavy twist case. In  the latter case the growth rates of the 
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FIGURE 8. Detailed plot of the stable regime of ordinary twists (hatched area) for y = 2.3. The solid 
dots represent an unstable solution. The numbers in the brackets are the Floquet parameters (b ,  
d )  for which the growth rate becomes maximal. The circles denote stable twist solutions. 

shifting and the wavy twist instability approach each other closely at  the critical 
Reynolds number 9& for finite values of b .  The disturbance eigenvectors thus change 
significantly at 9 = %I. The values a,, a2, c,, c2, c3 corresponding to the cases 
displayed in figure 7 (a ,  6 )  are given approximately by 

a,  = 2.79, a2 = 8.08, c, = 0.199, c2 = 0.398, c3 = 3.63, (4 .6a)  

a, = 2.37, a2 = 3.07, c, = 0.182, c2 = 0.363, c3 = 1.94. (4.6b) 

Basically the instability of twists is caused by a relatively small value of c2, which 
indicates that the non-axisymmetric components of the twist solutions do not grow 
strongly as the critical Reynolds number is exceeded. The non-diagonal terms in the 
matrix (4 .2)  thus exert their destabilizing role when c3/c2 becomes sufficiently large. 

The coupling between twist and shifting modes occurs throughout the parameter 
regime, but it does not lead to unstable situations in every case. Ordinary twists and 
wavy twists both exhibit regimes of stable solutions. As figure 6 shows, these regimes 
are located at  low rotation rates for ordinary twists and at  high rotations rate for 
wavy twists. The stable regime of ordinary twists is bounded towards high Reynolds 
numbers by a skewed varicose instability. This instability tends to change the 
wavelength and appears first at arbitrary small Floquet parameters. Beyond the 
stability boundary the largest growth rates are achieved for non-vanishing values of 
b and d ,  however. Figure 8 shows the bounds of the regime in more detail for the case 
y = 2.3. The angle 0 = arctan ( b / d )  between the wave vector of the instability and 
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FIQURE 9. Detailed plot of the stable regime of wavy twists (hatched area) for y = 3.1. Two 
separated stable regimes exist. The lower regime becomes unstable towards higher Reynolds 
numbers for Floquet parameters b + 0 while the upper regime is bounded toward higher Reynolds 
numbers by an instability with d += 0. 

the azimuthal axis is approximately 60". This angle does not change much as y 
varies. 

The regimes of stable wavy twist solutions are not as simple as those of ordinary 
twists and differ in character. For sufficiently small y there are no stable wavy twists. 
At high y (y  > 2.7) there are two separate stability regions, one at low and the other 
at  high Reynolds numbers. When y is decreased to values of about y = 2.7 the two 
regions first meet at one point and then form a single regime. Also, the regime of 
stable solutions becomes smaller with decreasing y until it disappears. Again, the 
solutions are destabilized by a wavelength-changing instability. But in contrast to 
the case of ordinary twist solutions, the wave vectors of the most unstable modes are 
not skewed. In  general the instability affects the axial wavelength (b  + O,d = 0 )  
except for the upper part of the regime, where the instability first sets in for d + 0 
and b = 0. Figure 9 presents a detailed picture for the case y = 3.1. 

In $3.2 we have seen that convergence properties of the finite-amplitude solutions 
were satisfactory. Here we want to consider the convergence properties of the 
stability analysis. We have chosen the case of wavy twists because the strongest 
growing instabilities occur for d = 0 or for b = 0 in this case. It is thus relatively easy 
to increase the truncation parameters. We compare the growth rate for solutions 
obtained with NT = 10 and mT = 4 at several Reynolds numbers along a line of 
constant y and constant Q/W with those obtained for NT = 11 and mT = 5. The 
results are shown in figure 10 for y = 2.7 and Q/W = 0.80. We conclude that the 
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FICC‘RE 10. Convergence of the largest eigenvalue u for the  case of wavy twists (y = 2.7 and 
Q / B  = 0.8). Solid curve, N ,  = 10 and mT = 4 ;  dashed curve, N,  = 11 and mT = 5. 

eigenvalues calculated with our standard choice of truncation parameters are 
reliable. All features such as, for example, the island of unstable solutions, are well 
represented. 

5.  Conclusions 
Twisted vortices are an important tertiary flow phenomenon in the Taylor-Couette 

system with corotating cylinders. They develop from axisymmetric Taylor-Couette 
vortices via a forward bifurcation. The correspondence between the theoretical 
predictions for the onset of twists and experimental data on twist vortices given by 
Andereck et al. (1983) is satisfactory. The photographs of twist flows show the ‘in- 
phase’ symmetry of ordinary twists a t  low rotation rates. The stability regimes of 
ordinary twists and wavy twists are sufficiently large to explain the experimental 
findings of stable twist structures. 

We have also shown that for a considerable range of the parameters twists are 
unstable with respect to a wavelength-changing instability. The mechanism of this 
instability is unusual. Usually the growing mode saturates, when the new structure 
has been established. But here an axial wavelength-changing instability is caused by 
a coupling between the twist and the shifting modes. This instability occurs a t  
intermediate rotation rates Q/B for both symmetry classes. The ultimate fate of 
these unstable twists is not clear. When the instability causes an increase of the axial 
wavelength then the Reynolds number becomes subcritical and the vortices will 
become axisymmetric again. When the axial wavelength is decreased no stable 
stationary solution can be reached. Another possibility is a modulation leading to a 
non-uniform wavelength. Patterns with ‘domains’ of large and small vortex pairs 
have indeed been observed in experiments (Andereck & Baxter 1988). The authors 
mention a sideband instability for this regime and comment that ‘the system seems 
unable to choose a new wavelength ’. This description of the instability fits well with 
our findings. The domain states are observed experimentally at rotation rates Q/&? 
of about 0.25 and at  Reynolds numbers of about 1400, however, which is beyond the 
regime where our analysis has been carried out. On the other hand, the unstable 



564 E .  Weisshaar, F .  H .  Busse and M .  Nagata 

regime that we found in our calculations represents only a small strip in the diagrams 
by Andereck et al. (1983). It seems likely that the same mechanism is working in both 
cases. 

The calculations have been carried out on the Cray XMP of the HLRZ of the KFA 
Jiilich and in part on the Cray XMP of the Leibniz-Rechenzentrum Miinchen. 
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